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Abstract

This paper proposes an improved block bootstrap method for out-of-sample statis-
tics. Previous block bootstrap methods for these statistics have centered the boot-
strap out-of-sample average on the observed out-of-sample average, which can
cause the distribution to be miscentered under the null — these papers have used
either a short out-of-sample period or an adjustment to the model parameter esti-
mators under the bootstrap to correct this centering problem. Our approach cen-
ters the bootstrap replications correctly under the null while continuing to use the
standard formulas to estimate the model parameters under the bootstrap, while
allowing the out-of-sample period to remain large. The resulting approach is com-
putationally more efficient, easier to program, and more widely applicable.
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1 Introduction

This paper develops a block bootstrap method that can be used to consistently estimate
the distributions of asymptotically normal out-of-sample (OOS) test statistics. We pro-
pose the “obvious” approach of drawing a large number of bootstrap samples from the
full dataset — using the Moving Blocks, Circular Block, or Stationary bootstraps pro-
posed by Kunsch (1989), Liu and Singh (1992), and Politis and Romano (1992, 1994),
(which we will define shortly) — and then calculating the OOS statistic of interest for
each bootstrap sample. We show that this approach is valid under conditions similar to
West’s (1996) and McCracken’s (2000); i.e. when the OOS statistic itself is asymptoti-
cally normal.

The block bootstraps mentioned in the previous paragraph are all nonparametric
techniques: each of these bootstraps draws J blocks of length ` at random from the orig-
inal dataset, and assembles them into a new bootstrap time-series. If `→∞ as T →∞,
the blocks capture the serial dependence in the original data without any additional ef-
fort by the researcher. (Under the right weak-dependence assumptions and other con-
ditions on the DGP, obviously.) These methods differ slightly in how they conduct this
random sampling. For the Moving Blocks Bootstrap developed by Kunsch (1989) and Liu
and Singh (1992), ` is set by the researcher, and each block of ` consecutive observa-
tions is equally likely to be chosen. The same principle applies for Politis and Romano’s
(1992) Circular Block Bootstrap, but now the bootstrap is allowed to “wrap around” the
endpoints of the original time series and choose, for example, the block with indices
T − 1, T, 1, 2, . . . ,`− 2.1 Politis and Romano’s (1994) Stationary Bootstrap extends the
Circular Block Bootstrap by drawing the block length independently for each block from
the geometric distribution.2

Although the nonparametric aspect of these block bootstraps has led to their pop-
ularity in many areas of time-series econometrics, they have been relatively unpopular
in the OOS testing literature. This is due to several factors. Although the first papers
developing the theoretical properties of these statistics, Diebold and Mariano (1995)
and West (1996), prove asymptotic normality, subsequent papers show that asymptotic
normality tends to hold only under restrictive conditions and fails otherwise. (See Clark
and McCracken, 2001, and McCracken, 2007, in particular.) Consequently, most papers
focus on misspecification tests for nested models, where it is natural to impose that a
restricted benchmark model holds under the null hypothesis and to use that restricted
model to generate the bootstrap samples, as in Kilian (1999) and Clark and McCracken
(2005). However, Giacomini and White (2006), Clark and West (2006, 2007), and Cal-
houn (2015) have proposed OOS test statistics that are asymptotically normal under

1This modification ensures that the mean of the distribution induced by the bootstrap always equals
the sample mean.

2This additional source of randomization produces a strictly stationary bootstrap sequence. It also
reduces the efficiency of the Stationary Bootstrap relative to the other block bootstraps, but by less than
was originally thought. See Nordman (2009) for a discussion of this issue.
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general conditions, so it is worth exploring whether block bootstraps can be applied
to these new statistics. This is especially true since researchers will often want to al-
low the benchmark model to be misspecified under the null hypothesis in forecasting
applications and when comparing several models, which is straightforward with block
bootstraps but more difficult with parametric bootstraps. (See in particular White, 2000,
Hansen, 2005, and Romano and Wolf, 2005.)

Previous treatments of these bootstraps have focused on restricted or recentered
bootstraps, but ours seems to be the first to study the theoretical properties of a stan-
dard bootstrap applied to the entire dataset. White (2000) and Hansen (2005), for
example, require the out-of-sample period to be very small relative to the total sam-
ple size to remove the effects of estimating the unknown parameters of the forecasting
models. Corradi and Swanson (2007) propose a different bootstrap procedure that adds
a recentering term to the parameter estimates and the OOS average; these adjustments
can be somewhat awkward to implement and can add to the computation time, which
reduces some of the block bootstrap’s advantages. Moreover, Corradi and Swanson’s
(2007) procedure is designed for M -estimators, and it is not obvious how to extend it
to, for example, GMM. In our paper, in contrast, we show that standard nonparametric
block bootstraps are consistent without modification and derive the correct centering
term to ensure consistency. Although this paper presents results for M -estimators, like
Corradi and Swanson’s (2007), the bootstrap and mathematical arguments are standard
and apply to other nonlinear estimation strategies as well, including GMM.

The next section presents our theoretical results and further explains the statistics
that we cover in this paper. Section 3 presents an empirical illustration of our approach
based on Calhoun’s (2015) mixed-window OOS statistic, and Section 4 presents a Monte
Carlo experiment that studies the bootstrap’s finite sample properties. Finally, Section 5
concludes.

2 The Bootstrap for Out-of-Sample Statistics

We’ll develop our theoretical results in a fairly general framework. Let yt+1 be a target
variable of interest — a variable that is being predicted — and let x t be a vector of other
variables that are potentially informative about yt+1 — these are our predictors. The
forecast ŷt+1 depends on the variables x t and an estimated parameter β̂t . In the research
project that we’re trying to model, we’re interested in a function of these variables and
parameters, and the OOS average of that function is our test statistic.

In symbols, we’re interested in statistics of the form

f̄ = 1p
P

T−1
∑

t=R

f (yt+1, x t , β̂1t , . . . , β̂kt)≡
1p
P

T−1
∑

t=R

ft(β̂1t , . . . , β̂kt),

where each β̂kt corresponds to a different forecasting model. To make the notation
cleaner, we’ll define ft(β1, . . . ,βk) ≡ f (yt+1, x t ,β1, . . . ,βk). We’re also going to assume
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that (yt+1, x t) is strictly stationary to simplify our presentation. One could derive the
same results under the marginally weaker assumption that certain functions of these
variables are weakly stationary.

The coefficients are updated each period to mimic a true OOS forecasting exercise.
Using standard terminology, the estimator β̂i t is defined as

β̂i t =







argminβ
∑t−1

s=1 qi(ys+1, xs,β) recursive window

argminβ
∑t−1

s=t−R+1 qi(ys+1, xs,β) rolling window

argminβ
∑R−1

s=1 qi(ys+1, xs,β) fixed window,

(1)

and, as before, to make the notation cleaner, define qis(β) ≡ qi(ys+1, xs,β). Obviously,
for this to be a reasonable estimation approach qis will need to satisfy standard assump-
tions that we’ll discuss soon. The implicit assumption is that the researcher is interested
in conducting inference on E ft(β10, . . . ,βk0), where

βi0 = arg min
β

E qi(ys+1, xs,β)

is the pseudotrue equivalent of β̂i t ,
We know from West (1996) that, under appropriate assumptions,

p
P( f̄ − E ft(β0))

is asymptotically normal with mean zero. The key insight in our paper is that we can
match this result in the bootstrap, but we need to be careful about the exact centering
term. In particular, we should expect

p
P( f̄ ∗ − E∗ f ∗t (β

∗
0))

to have the same asymptotic distribution and to give reliable confidence intervals, etc.
where a * denotes a quantity under the bootstrap distribution and

f̄ ∗ = 1
P

T−1
∑

t=R

f (y∗t+1, x∗t , β̂
∗
1t , . . . , β̂∗kt)≡

1
P

T−1
∑

t=R

f ∗t (β̂
∗
1t , . . . , β̂∗kt) (2)

where β̂∗i t is estimated exactly the same way as β̂t:

β̂∗i t =







argminβ
∑t−1

s=1 q∗is(β) recursive window

argminβ
∑t−1

s=t−R q∗is(β) rolling window

argminβ
∑R−1

s=1 q∗is(β) fixed window

(3)

and q∗is(β)≡ qi(y∗s+1, x∗s ,β). For the circular and stationary block bootstraps,

E∗ f ∗t (β1, . . . ,βk) =
1

T−1

T−1
∑

t=1

ft(β1, . . . ,βk)
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and

β∗i0 = arg min
β

T−1
∑

s=1

qi(ys+1, xs,β).

For the moving blocks bootstrap, a slight correction is necessary since observations at
the ends of the sample are less likely to be selected, but the same equations hold ap-
proximately. In any of these three bootstraps, E∗ f ∗t (β

∗
0) does not incorporate the β̂t

terms.
In general, let→p∗ and→d∗ refer to convergence in probability or distribution condi-

tional on the observed data. We will present the required theoretical assumptions first,
then present our results.

Assumption 1. The estimators β̂i t and β̂∗i t are estimated as defined in Equations (1)
and (3). Moreover each βi0 = arg minβ E qis(β) is uniquely identified and the vector
(β10, . . . ,βk0) is an element of a compact set Θ.

For the next result, let ∇h(β) and ∇2h(β) refer to the first and second derivative of
the function h. If β is a K-vector,∇h(β) will be K×1 and∇2h(β) will be K×K . Also let
∇ih(β) refer to the ith element of ∇h(β) and ∇2

i jh(β) to the (i, j) element of ∇2h(β).
This assumption imposes standard moment and smoothness conditions on the un-

derlying functions ft(·) and qi t(·). It is quite likely that these are stronger than necessary
and could be weakened to smoothness conditions on E ft(·) and E qi t(·), as in McCracken
(2000), but we leave that for future work.3

Assumption 2. The functions ft(β1, . . . ,βk) and qi t(β) are almost surely twice continu-
ously differentiable in an open neighborhood N of (β10, . . . ,βk0) and E∇2qi t(β) is positive
definite uniformly in N. There also exists a sequence of random variables mt such that
supβ∈N |∇2

i q j t(β)| ≤ mt , supβ∈N |∇2
i j ft(β1, . . . ,βk)| ≤ mt , supβ∈N |∇iq j t(β)| ≤ mt , and

supβ∈N |∇i ft(β1, . . . ,βk)| ≤ mt almost surely and E mr
t is uniformly finite, with r > 2

defined further in Assumption 3.

The next assumptions handle weak dependence and stationarity. These assumptions
are weaker than are typically used in this literature because of advances in the under-
lying CLT and bootstrap theory used. For Assumption 3, define

gt(β0) = ( ft(β0),∇q1t(β1), . . . ,∇qkt(βi))
′.

Assumption 3. The stochastic process (gt(β0), vec(∇gt(β0))) is weakly stationary. More-
over, (yt+1, x t) is strong-mixing of size −r/(r − 2) or uniform mixing of size −r/(2r − 2)
with r > 2.

3Extending our results in this way would be equivalent to extending de Jong and Davidson (2000) in
the same way, which appears feasible but nontrivial.
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The next assumption limits the practical applicability of these results, but is difficult
to relax in general. There are OOS test statistics that satisfy this condition (Giacomini
and White, 2006, Clark and West, 2006, 2007, and Calhoun, 2015) but many do not.

Assumption 4. The asymptotic variance matrix of f̄ is uniformly positive definite.

Finally, we make standard assumptions on the size of the in-sample and out-of-
sample sizes and on the block length of the bootstrap.

Assumption 5. R, P →∞ as T →∞. The bootstrap sequence (y∗2 , x∗1), . . . , (y∗T , x∗T−1)
is constructed using a moving blocks, circular blocks, or stationary bootstrap with block
lengths drawn from the geometric distribution. The (expected) block length ` satisfies `→
∞ and `/T → 0.

Then the main result is quite simple: the bootstrap distribution is consistent for the
asymptotic distribution of the statistic and the bootstrap variance is consistent for the
asymptotic variance of the original OOS statistic.

Theorem 1. Under Assumptions 1–5, var( f̄ )/var∗( f̄ ∗)→p 1 and

Pr
�

sup
x

�

�Pr∗[
p

P( f̄ ∗ − E∗ f ∗t )≤ x]− Pr[
p

P( f̄ − E ft)≤ x]
�

�> ε
�

→ 0 (4)

for all ε > 0.

A few quick remarks follow.

Remark 1. Typically this result will be used to test the null hypothesis E ft = 0. To
generate critical values for this test, researchers need to calculate E∗ f ∗t so that it can
be removed from the bootstrapped OOS statistic. We can use the bootstrap average to
approximate E∗ f ∗t as one would expect:

E∗ f ∗t ≈
1
n

n
∑

i=1

f̄ ∗i

where there are n bootstrap replications and f̄ ∗i represents the ith realization of the
bootstrapped statistic.

Remark 2. Often the bootstrap is more accurate for studentized statistics than for the
corresponding sample mean. One can certainly estimate the asymptotic variance in our
setting and apply the bootstrap to the studentized OOS statistic. But there are other
options as well: first, one can use the bootstrap to estimate the variance of the OOS
statistic, then use a double bootstrap to normalize the bootstrap statistic. Obviously,
this may be computationally impractical. Another approach is to partially studentize
the statistics by dividing by the naive estimator of the standard deviation, which may
reduce some of the effects of the variance.
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Remark 3. As mentioned earlier, this bootstrap procedure can be especially useful when
comparing multiple forecasting models, which will be part of our empirical example.
White (2000), Hansen (2005) and Romano and Wolf (2005) are substantial contribu-
tions to this literature and Romano et al. (2008) review aspects of this literature as
well.

Remark 4. The issue of choosing the block length is clearly very important but is beyond
the scope of this paper. For some guidance, see Politis and White (2004), Romano and
Wolf (2006), and Patton et al. (2009).

Related to Remark 4, economic theory will sometimes imply that ft should be a
martingale difference sequence, at least under the null hypothesis of interest. Under
this stronger null hypothesis, researchers can avoid choosing the block length and the
procedure is simplified somewhat: the bootstrap is consistent with a block length 1.
Theorem 2 formalizes this result.

Theorem 2. Suppose that Assumptions 1–5 hold and also assume that ft−E ft is an MDS
and that the i.i.d. bootstrap is used instead of the block bootstraps of Theorem 1. Then
var( f̄ )/var∗( f̄ ∗)→p 1 and

Pr
�

sup
x

�

�Pr∗[
p

P( f̄ ∗ − E∗ f ∗t )≤ x]− Pr[
p

P( f̄ − E ft)≤ x]
�

�> ε
�

→ 0 (5)

for all ε > 0.

The proof is a straightforward modification of that of Theorem 1 and is omitted. It
is important to recognize that this result allows for other forms of serial dependence,
as long as the MDS property holds.

3 Empirical Illustration

This section demonstrates the use of the bootstrap by revisiting Goyal and Welch’s
(2008) study of excess stock returns. Goyal and Welch argue that many variables thought
to predict excess returns (measured as the difference between the yearly log return of
the S&P 500 index and the T-bill interest rate) on the basis of in-sample evidence fail
to do so out-of-sample. To show this, Goyal and Welch look at the forecasting perfor-
mance of models using a lag of the variable of interest, and show that these models do
not significantly outperform the excess return’s recursive sample mean.

We will conduct the same analysis here, but using the asymptotically normal MDS
test proposed by Calhoun (2015). The benchmark model is the excess return’s sample
mean (as in the original) and the alternative models are of the form

excess returnt = α0 +α1 predictort−1 + εt . (6)
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The predictors used are listed in the left column of Table 1 (see Goyal and Welch, 2008,
for a detailed description of the variables). The data set is annual data beginning in
1927 and ending in 2009, and the rolling window uses 10 observations.

To implement Calhoun’s (2015) statistic, we estimate α0 and α1 for each predictor
using OLS with a 10-year rolling window to produce forecasts ŷi t . We also use the sam-
ple mean calculated with a recursive window as the benchmark forecast, ŷ0t . The OOS
statistic is based on the adjusted difference in squared-error between these forecasts for
each predictor,

f̄i =
1
P

T−1
∑

t=R

�

(yt+1 − ŷ0,t+1)
2 − (yt+1 − ŷi,t+1)

2 + ( ŷ0,t+1 − ŷi,t+1)
2
�

.

Calhoun (2015) shows that this statistic remains asymptotically normal as T →∞ as
long as the window length of the rolling window stays fixed and that E f̄i is asymptot-
ically normal with mean zero under the null hypothesis that yt+1 − E yt+1 is an MDS
with respect to the information set generated by each of the predictors considered by
Goyal and Welch (2008) and listed in Table 1.

We will test against one-sided alternatives, so the test rejects for large values of f̄i.
(i.e. when the regressor in the alternative model has predictive power.) We use Hansen’s
(2005) test of Superior Predictive Ability (SPA) to account for multiplicity. Hansen’s test
uses studentized statistics,4 so we use the variance formula derived by Calhoun (2015)
(let σ̂2

i denote the estimated variance for
p

P f̄i), and proceeds in several steps:

• First, all of the statistics with
p

P f̄i/σ̂i less than −
p

2 log log P are removed and
set aside. These statistics are far enough from their alternatives that they can be
treated as if the were known to be true. Keeping them in the analysis, as originally
proposed by White (2000), will make the overall test unnecessarily conservative.

Let S be the set of the indices of statistics remaining after this step, so

S = {i |
p

P f̄i/σ̂
i > −

Æ

2 log log P}.

In our application, none of the statistics are removed by this first step.

• Second, calculate the 1−α quantile of

max
i∈S

p
P( f̄ ∗i − E∗ f ∗i t)/σ̂

∗
i

with the bootstrap. Call the value of this quantile ĉ. In this application, α is 0.1
and ĉ = 2.67. (Based on 599 replications with i.i.d. sampling, as suggested by
Theorem 2.)

4We actually depart a little from Hansen’s (2005) SPA test, in that we studentize each of the boot-
strapped statistics as well. Hansen recommends normalizing each f̄ ∗i with its population standard devi-
ation under the distribution induced by the bootstrap; this is a shortcut that can save computation time,
but is not necessary here.
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value naive SPA ours

long term rate 1.56 sig. sig.
book to market 1.41 sig. sig.
dividend yield 1.27 sig.
dividend price ratio 0.95
net equity 0.70
dividend payout ratio 0.64
treasury bill 0.53
stock variance 0.50
default return spread 0.16
default yield spread 0.09
inflation −0.09
term spread −0.43
earnings price ratio −0.56
long term yield −0.74

Table 1: Results from OOS comparison of equity premium prediction models; the benchmark is
the recursive sample mean of the equity premium and each alternative model is a constant and
single lag of the variable listed in the “predictor” column. The dataset begins in 1927 and ends
in 2009 and is annual data. The “value” column lists the value of this paper’s OOS statistic, the
“naive” column indicates whether the statistic is significant at standard critical values, the “SPA”
column indicates significance using the SPA bootstrap (incorrectly) to account for the number
of models, and the “corrected” column indicates significance using the critical values generated
by our bootstrap that account for the number of models using Hansen’s (2005) SPA algorithm
correctly. See Section 3 for details.

• Last, compare the individual test statistics to ĉ. If any
p

P( f̄ ∗i − E∗ f ∗i t)/σ̂
∗
i > ĉ,

the MDS null hypothesis is rejected. Moreover, the weaker null hypothesis that
yt+1 − E yt+1 is an MDS with respect to the ith predictor alone is also rejected.

Table 1 presents the results of our analysis.5 The column “value” gives the value
of the test statistic for each model, while the “naive” and “corrected” columns indicate
whether the statistic is greater than the standard size-10% critical value (1.28) and the
critical value estimated by the bootstrap (2.67). The “SPA” column indicates whether the
statistic is greater than the critical value produced by misapplication of Hansen’s (2005)
SPA algorithm (1.26) — i.e. bootstrapping the f̂i t values to generate a critical value. This
is similar to the procedure proposed by Hansen, but Hansen’s (2005) proposal is for a
very different setting where R is large and P is small.

Two predictors are significant at the naive critical value, the long term interest rate
and the book to market ratio, and a third at the the misused SPA critical value, the divi-

5This statistical analysis was conducted in R (R Development Core Team, 2011) using the xtable (Dahl,
2009, version 1.6-0), and dbframe (Calhoun, 2010, version 0.2.7) packages.
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dend yield. But none are significant after correcting for both parameter estimation error
and data snooping with our proposed approach. This suggests that the error introduced
by a misapplied bootstrap has as large of an effect on inference as neglecting to control
for multiple comparisons.

4 Monte Carlo results

The Monte Carlo simulations we present are aimed at addressing a simple question: if
a standard block bootstrap works well in this setting, why has no one used it? Does the
block bootstrap work at all? Obviously, this is just a preliminary first step in understand-
ing the finite-sample behavior of these statistics, and I plan to add several other designs
to future versions of this paper.

For now, we will use a very simple Data Generating Process, originally proposed
by West (1996). In this example, the data are generated by the following system of
equations:

yt = γ0 + γ1w1t + γ2w2t + vt

wi t = zi t + vt

(vt , z1t , zt2)∼ i.i.d. N(0, I3).

The two competing forecasting models are yt = αi +βiwi t +ui t and the coefficients are
estimated by Instrumental Variables using zi t as the instrument. The OOS test statistic
is just the difference in squared loss associated with the forecasts, and the null is that
the expected squared loss is the same. This estimation strategy — IV instead of OLS— is
appropriate when one wants to use the forecast performance of the models as a proxy for
other aspects of their specification. One could, of course, estimate the models with OLS
instead of IV, but that would not say anything about the structural models underlying
the regressions.

This design has several interesting features. First, the IV estimators are not M -
estimators but are GMM estimators, and it is not trivial to derive Corradi and Swan-
son’s (2007) correction term for them, so we omit their bootstrap. Even though our
theoretical results assume that M -estimators are used for the forecast, inspection of
the mathematical proofs show that the basic strategy used would apply equally well to
GMM estimators, and so we should expect our results to apply here as well. Moreover,
since we are proposing a simple block bootstrap, it is easy to implement regardless of
the actual statistic.

Second, parameter estimation error has a substantial effect in this setting. In West’s
(1996) simulations, the naive OOS test statistic that ignores this source of error can
have rejection probabilities of up to 50% for a test with nominal size 5%. The size
distortions shrink if P is quite small relative to R. In our setting, we would expect the
same behavior for the naive OOS bootstrap that only samples from f̂R, . . . f̂T−1.
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T P naive bootstrap our bootstrap

300 50 24.1 7.5
100 34.6 7.2
200 51.2 7.3
250 55.3 7.1

500 50 19.7 8.8
150 32.6 7.8
350 50.1 7.9
450 58.5 8.2

Table 2: Results of the Monte Carlo experiment, based on 2000 simulations from the DGPde-
scribed in Section 4 with 499 bootstrap replications each. The “naive bootstrap” column lists the
actual size using resamples of the observed out-of-sample loss to produce the bootstrap critical
values and the column labeled “our bootstrap” uses the method proposed in this paper.

For the specific simulation parameters, we run 2000 simulations each with 499 boot-
strap replications. We run simulations with 300 observations and 500 observations and
consider several splits between R and P. Since the observations are independent, we
do a simple i.i.d. bootstrap. (This is equivalent to using a block length of 1.) All tests
are two-sided with α= 10%, and all of the simulations were conducted in Julia version
0.3.6 (described in Bezanson et al., 2012, and Bezanson et al., 2014).

The simulation results are presented in both a table (Table 2) and in a dot chart
(Figure 1); the table lets us read the individual values cleanly and the chart makes it easy
to spot patterns. We can see immediately that the test based on the correct bootstrap
is slightly undersized, but appears to not overreject for any of the parametrizations we
consider. The test based on naively bootstrapping the realized out-of-sample values, on
the other hand, is seriously deficient and overrejects considerably; almost 60% at worst
and almost 20% at best. As we expect, the overrejection probability is smaller when P
is very small relative to the total sample size, but increases as P gets larger.

These results are extremely preliminary and incomplete. For future versions of the
paper we plan to include the following as well:

• Comparison to West’s (1996) critical values that do not use the bootstrap.

• Compare studentized statistics (which we don’t cover) with unstudentized.

• Use the DGP and statistics from the empirical section to make sure that the boot-
strap works in that setting and to compare to other bootstrap methods.

• Check FWE control in multiple testing.
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Summary of Monte Carlo results

Size

50

100

200

250

0.1 0.2 0.3 0.4 0.5 0.6

●

●

●

●

T = 300

50

150

350

450 ●

●

●

●

T = 500

naive bootstrap
nominal size
our bootstrap

●

Figure 1: Results of the Monte Carlo experiment, based on 2000 simulations from the DGPde-
scribed in Section 4 with 499 bootstrap replications each. The circles labeled “naive bootstrap”
plot the actual size using resamples of the observed out-of-sample loss to produce the bootstrap
critical values and the points labeled “our bootstrap” use the method proposed in this paper.
The tests’ nominal size is plotted for reference.

5 Conclusion

This paper establishes that standard block bootstraps can be used to consistently esti-
mate the distribution of asymptotically normal OOS statistics. We also show how the
bootstrap can be used to correct for multiple testing in empirical applications, along the
lines of White’s (2000) Reality Check and provide simulation evidence on the perfor-
mance of our approximation in finite samples.

Appendix: Additional mathematical results

We will prove our results under the simplifying assumption that there is a single model
and a single sequence of M -estimators β̂t . Since we are assuming non-degeneracy of the
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models, this assumption does not appreciably change our arguments. This also implies
that we will drop the i index for the estimators β̂i t , estimation criteria qi t(β) etc.

We will also present proofs for the recursive window; the fixed and rolling window
have similar proofs but are less complicated.

To make the mathematical results in this appendix clearer, we will introduce the
following additional notation:

• ft = ft(β0) and f ∗t = f ∗t (β
∗
0)

• Ft(β) =∇ ft(β) and F ∗t (β) =∇ f ∗t (β),

• Ft = Ft(β0) and F ∗t = F ∗t (β
∗
1),

• F = E Ft and F ∗ = E∗ F ∗t ,

• ht(β) =∇qt(β) and h∗t (β) =∇q∗t (β),

• ht = ht(β0) and h∗t = h∗t (β
∗
0).

Where it is feasible, we will reuse notation from West (1996) and West and McCracken
(1998).

Also define

S f f =
∞
∑

j=−∞

E ft f ′t− j

S f h =
∞
∑

j=−∞

E fth
′
t− j

Shh =
∞
∑

j=−∞

E hth
′
t− j,

π= lim P/R, and

λ f h =



















1−π−1 ln(1+π) recursive window,π ∈ (0,∞)
π/2 rolling window,π≤ 1

1−π/2 rolling window,π > 1

0 fixed window,

λhh =



















2λ f h recursive window

π−π2/3 rolling window,π≤ 1

π− 1/3π rolling window,π > 1

π fixed window.
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Also define u1, . . . , uJ to be the first period of each block of the circular bootstrap,
and, for each j = 1, . . . , J , define the σ-fields

H j = σ(u1, . . . , u j)

and

H ∗
j = σ(u1, . . . , u j; y1, . . . , yT ; x1, . . . , xT ).

Also let l = T − J` be the number of elements in the last block.

Proof of Theorem 1

The proof proceeds in several steps. First, we prove via a Taylor expansion (as in West,
1996) that

Pr∗[
p

P( f̄ ∗ − E∗ f ∗t )≤ x]→p Φ(x/σ) (7)

where Φ is the CDF of the standard normal and σ is a known constant. Similar argu-
ments directly following West’s imply that

Pr[
p

P( f̄ − E ft)≤ x]→p Φ(x/σ) (8)

under our assumptions, so

Pr∗[
p

P( f̄ ∗ − E∗ f ∗t )≤ x]→p Pr[
p

P( f̄ − E ft)≤ x]. (9)

Moreover, the assumed moment conditions ensure that the variance of
p

P f̄ ∗ under the
bootstrap distribution converges to the variance of

p
P f̄ . Finally, a standard argument

attributed to Polyà ensures that (4) follows from (9). (See the proof of Theorem 1 in
Calhoun, 2014, for example, for an explicit statement of these final steps.)

For (7), begin by expanding f ∗t (β̂
∗
t ) around β∗0 to get

p
P( f̄ ∗ − E∗ f ∗t ) =

1p
P

T−1
∑

t=R

( f ∗t − E∗ f ∗t ) +
1p
P

T−1
∑

t=R

F ∗t · (β̂
∗
t − β

∗
0) +

1p
P

T−1
∑

t=R

w∗t

= 1p
P

T−1
∑

t=R

( f ∗t − E∗ f ∗t ) + F ∗B∗ 1p
P

T−1
∑

t=1

ath
∗
t + op∗(1)

where (similar to West, 1996)

wt =
1
2(β̂

∗
t − β

∗
0)
′∇2 f ∗t (b

∗
t )(β̂

∗
t − β

∗
0),

at =







∑T−1
s=max(R−1,t) 1/s recursive window

min( t
R−1 , T−t

R−1 , 1) rolling window
P

R−11{t < R− 1} fixed window,

(10)
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and each b∗t lies between β̂∗t and β∗0 . The second equality holds because 1p
P

∑T−1
t=R w∗t =

op∗(1) and

1p
P

T−1
∑

t=R

F ∗t · (β̂
∗
t − β

∗
0) = F ∗B∗ 1p

P

T−1
∑

t=1

ath
∗
t + op∗(1),

both from Lemma A.4.
By Lemma A.5,

1p
P

T−1
∑

t=1

�

( f ∗t − E∗ f ∗t )1{t ≥ R}
ath

∗
t

�

→d∗ N

�

�

0
0

�

,

�

S f f λ f hS f h

λ f hS′f h λhhShh

��

(11)

and F ∗→p F and B∗→p B by Lemma A.1, so

Pr∗[
p

P( f̄ ∗ − E∗ f ∗t )< x]→p Φ(x/σ) (12)

for all x , with

σ2 = S f f +λ f h(FBS f h + S′f hB′F ′) +λhhFBShhB′F ′.

Normality for the original OOS average follows essentially the same argument (this
is essentially the same argument as in West, 1996; the Lemmas referenced above estab-
lish intermediate results for the original OOS statistic under our assumptions as well as
the bootstrapped statistic), so

Pr[
p

P( f̄ − E ft)< x]→ Φ(x/σ) (13)

for all x . As discussed above, this completes the proof.

A Supporting Results

Lemma A.1. Under the conditions of Theorem 1, β∗0 →
p β0, B∗→p B, F ∗→p F.

Proof of Lemma A.1. We’ll present proofs of these results for the circular block boot-
strap; the proofs for the moving blocks and stationary bootstraps are similar. For β∗0 ,
by definition β∗0 = arg minβ

∑T
s=2 qs(β). Our smoothness and moment conditions en-

sure that
∑T

s=2 qs(β) obeys a uniform LLN and converges in probability to E qs(β) for all
β ∈ Θ. Then consistency of β∗0 follows from, for example, Theorem 2.1 of Newey and
McFadden (1994).

For F ∗, we have

Pr[|F ∗ − F |> ε]≤ Pr[|F ∗ − F |1{β∗0 ∈ N}> ε] + Pr[β∗0 /∈ N].

The second probability converges to zero by consistency of β∗0 . Now F ∗−F = F ∗−F(β∗0)+
F(β∗0)− F , and F ∗ − F(β∗0)→

p 0 by the uniform LLN. Choose ∆ so that |β1 − β2| < ∆
implies that |F(β1)− F(β2)|< ε. Then

Pr[|F(β∗0)− F |> ε]≤ Pr[|β∗0 − β0|>∆]

which converges to zero by the first part of this Lemma. The proof for B∗ is similar.
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Lemma A.2. Under the conditions of Theorem 1,

max
t=R,...,T−1

|β̂t − β0| →p 0 (14)

max
t=R,...,T−1

|β̂∗t − β
∗
0 | →

p∗ 0 (15)

max
t=R,...,T−1

�

�− 1
t−1

t−1
∑

s=1

∇hs(bt)− B−1
�

�→p 0 (16)

and

max
t=R,...,T−1

�

�− 1
t−1

t−1
∑

s=1

∇h∗s (b
∗
t )− B∗−1

�

�→p 0 (17)

where each bt is any array a.s. between β̂t and β0 and each b∗t is any array a.s. between
β̂∗t and β∗0 .

The proof of (16) follows from standard arguments for M -estimators and is also
omitted.

Proof of (15). First, assume t →∞ as T →∞. We have Pr∗[|β̂∗t − β
∗
0 | > ε] →

p 0 if
Pr[|β̂∗t − β

∗
0 |> ε]→ 0. To prove this second convergence, we will first establish that

sup
β∈N

1
t−1

t−1
∑

s=1

(q∗s (β)− E∗ q∗s (β))→
p 0. (18)

Pointwise convergence holds from the LLN (Calhoun, 2014) and stochastic equicontinu-
ity of this function is implied by our moment and smoothness conditions, so (18) holds
by standard arguments. Then given uniform convergence and identification, Pr[|β̂∗t −
β∗0 |> ε]→ 0 follows.

Then extending this result to

Pr[ max
t=R,...,T−1

|β̂∗t − β
∗
0 |> ε]→ 0

follows the same argument as used in Calhoun’s (2014) FCLT.

Proof of (17). First, observe that for any ∆

Pr∗
�

sup
t=R,...,T−1

�

�− 1
t

t
∑

s=1

∇h∗s (b
∗
t )− B∗−1

�

�>∆
�

(19)

≤ Pr∗
�

sup
t=R,...,T−1

�

�− 1
t

t
∑

s=1

∇h∗s − B∗−1
�

�1{β∗0 ∈ N}>∆
�

(20)

+ Pr
�

sup
t=R,...,T−1

�

�− 1
t

t
∑

s=1

(∇h∗s (b
∗
t )−∇h∗s )

�

�1{β∗0 ∈ N , β̂∗t ∈ N}>∆
�

(21)

+ Pr[β∗0 /∈ N] + Pr[β̂∗t /∈ N for some t = R, . . . , T − 1] (22)
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The last two probabilities converges to zero by Lemma A.3 and by (15). Moreover,
just as in the proof of Theorem 1, (1/t)

∑t
s=1∇h∗s can be re-expressed as the sum of a

uniformly integrable MDS that obeys a uniform LLN, so the first probability on the rhs
of (19) converges to zero. Finally, since ∇hs(β) is continuous uniformly in N , we can
choose δ so that |β1 − β2|< δ implies that |∇hs(β1)−∇hs(β2)|<∆. Then

Pr∗
�

sup
t=R,...,T−1

�

�− 1
t

t
∑

s=1

(∇h∗s (b
∗
t )−∇h∗s )

�

�1{β∗0 ∈ N , β̂∗t ∈ N}>∆
�

≤

Pr∗[ sup
t=R,...,T−1

|b∗t − β
∗
0 | > δ and β∗0 ∈ N , and β̂∗t ∈ N for all t = R, . . . , T − 1]

which again converges to zero in probability.
Now choose ∆ so that

�

�− 1
t

t
∑

s=1

∇h∗s (bt)− B∗−1
�

�<∆

implies that

�

�

�

�

− 1
t

t
∑

s=1

∇h∗s (bt)
�−1
− B∗

�

�

�< ε.

Then

Pr∗
�

sup
t=R,...,T−1

�

�

�

�

− 1
t

t
∑

s=1

∇h∗s (bt)
�−1
− B∗

�

�

�> ε
�

≤

Pr∗
�

sup
t=R,...,T−1

�

�− 1
t

t
∑

s=1

∇h∗s (bt)− B∗−1
�

� > ∆
�

→p∗ 0,

completing the proof.

Lemma A.3. If a ∈ [0,1/2) and the conditions of Theorem 1 hold, then

max
t=R,...,T−1

�

�(t − 1)a−1
t−1
∑

s=1

hs

�

�→p 0 (23)

max
t=R,...,T−1

�

�(t − 1)a−1
t−1
∑

s=1

h∗s
�

�→p∗ 0 (24)

max
t=R,...,T−1

(t − 1)a|β̂t − β0| →p 0 (25)

and

max
t=R,...,T−1

(t − 1)a|β̂∗t − β
∗
0 | →

p∗ 0. (26)
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The proofs of (23) and (25) follow the same arguments as West (1996) with minor
tweaks as in Calhoun (2015, Lemma A.2) and are omitted. Note that (25) and (26) are
refinements of (14) and (15); (14) and (15) establish basic consistency results using
standard arguments, and these results are used heavily in the other proofs, but (25)
and (26) strengthen those results by adding rate of convergence conditions.

Proof of (24). We will present this proof under the assumption that ht is univariate to
reduce the notational clutter. Otherwise the argument holds element-by-element.

Let δ be a positive number less than 1/2− a and define H∗i =
∑Ki

t=Ki−1+1 h∗t/t1−δ, so

max
t=R,...,T−1

�

�

1
t−1

t−1
∑

s=1

h∗t
�

�≤ R−δ max
j= j∗R,...,J

�

�

j
∑

i=1

H∗i
�

�+ R−δ max
t=R,...,T−1

�

�

t−1
∑

s=K j∗t−1
+1

h∗s/(t − 1)1−δ
�

�,

where j∗s is defined to be the index of the block containing observation s of the boot-
strap sequence. (So, for example, j∗1 = 1.) Now observe that {H∗i ,H ∗

i } is a martingale
difference sequence, so the maximal inequality implies that

Pr∗
�

max
j= j∗R,...,J

�

�

j
∑

i=1

H∗i
�

�> ε
�

≤ (1/ε2)
J
∑

i=1

E∗(H∗2i | H
∗

i−1).

By definition

E∗(H∗2i | H
∗

i−1) =
1

T−1

T−2
∑

u=0

�∑̀

t=1

hu+t(β
∗
0)/(Ki−1 + t)1−δ

�2

= 1
T−1

T−2
∑

u=0

�∑̀

t=1

(hu+t + hu+t(β
∗
0)− hu+t)/(Ki−1 + t)1−δ

�2
.

Since R−δ→ 0, to prove (24) it suffices to show that

1
T−1

T−2
∑

u=0

J
∑

i=1

�

`i
∑

t=1

hu+t/(Ki−1 + t)1−a−δ
�2
= Op(1) (27)

1
T−1

T−2
∑

u=0

J
∑

i=1

`i
∑

t=1

�

(hu+t(β
∗
0)− hu+t)/(Ki−1 + t)1−a−δ

�2
= Op(1) (28)

and

max
t=R,...,T−1

�

�

t−1
∑

s=K j∗t−1
+1

h∗s/(t − 1)1−a−δ
�

�= Op∗(1). (29)

As in Calhoun (2015), our assumptions ensure that ht is an L2-mixingale of size −1/2.
And if ct and ζ j denote its mixingale constants and coefficients, ht/t1−a−δ is also an
L2-mixingale of size −1/2 with constants ct/t1−a−δ.
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For (29), we have

E∗
�

max
t=R,...,T−1

�

�

t
∑

s=K j∗t −1+1

h∗s/(t − 1)1−a−δ
�

�

�2

≤ E∗
J
∑

i=1

max
t=Ki−1+1,...,Ki

�

�

t
∑

s=Ki−1+1

h∗s/(t − 1)1−a−δ
�

�

2

= Op

�

1
T−1

J
∑

i=1

T−2
∑

u=0

max
t=Ki−1+1,...,Ki

�

�

t
∑

s=Ki−1+1

hs+u/(t − 1)1−a−δ
�

�

2

+ 1
T−1

J
∑

i=1

T−2
∑

u=0

max
t=Ki−1+1,...,Ki

�

�

t
∑

s=Ki−1+1

(hs+u(β
∗
0)− hs+u)/(t − 1)1−a−δ

�

�

2
�

.

McLeish’s (1975) maximal inequality for mixingales implies that

E max
t=Ki−1+1,...,Ki

�

�

t
∑

s=Ki−1+1

hs+u/(t − 1)1−a−δ
�

�

2 ≤ E
�

�

Ki
∑

s=Ki−1+1

hs+u/(s− 1)1−a−δ
�

�

2
.

Moreover,

1
T−1

J
∑

i=1

T−2
∑

u=0

max
t=Ki−1+1,...,Ki

�

�

t
∑

s=Ki−1+1

(hs+u(β
∗
0)− hs+u)/(t − 1)1−a−δ

�

�

2

≤ 1
T−1

J
∑

i=1

T−2
∑

u=0

Ki
∑

s=Ki−1+1

�

(hs+u(β
∗
0)− hs+u)/(t − 1)1−a−δ

�2
,

so the net result is that (29) holds whenever (27) and (28) do.
We’ll prove (27) first. Using McLeish’s (1975) maximal inequality (again) implies

that

E
�

�

�

1
T−1

T−2
∑

u=0

J
∑

i=1

�∑̀

t=1

hu+t/(Ki−1 + t)1−a−δ
�2�
�

�

= 1
T−1

T−2
∑

u=0

J
∑

i=1

E
�∑̀

t=1

hu+t(β0)/(Ki−1 + t)1−a−δ
�2

= O
�

1
T−1

�

T−2
∑

u=0

J
∑

i=1

∑̀

t=1

(Ki−1 + t)2a+2δ−2

= O(1)
T−1
∑

t=1

t2a+2δ−2.

Since δ was chosen to ensure that 2a + 2δ − 2 < −1, this last summation is finite as
required.
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For (28), expanding hu+t(β∗0) around β0 gives

1
T−1

T−2
∑

u=0

J
∑

i=1

�∑̀

t=1

(hu+t(β
∗
0)− hu+t(β0))/(Ki−1 + t)1−a−δ

�2

= 1
T−1

T−2
∑

u=0

J
∑

i=1

�∑̀

t=1

∇hu+t(bu+t) · (β∗0 − β0)/(Ki−1 + t)1−a−δ
�2

= (β∗0 − β0)
′
�

1
T−1

T−2
∑

u=0

J
∑

i=1

∑̀

s,t=1

�

1
(Ki−1+s)(Ki−1+t)

�1−a−δ
∇hu+t(bu+t)∇hu+s(bu+s)

′
�

(β∗0 − β0)

= Op

�

1
T2

�

T−2
∑

u=0

J
∑

i=1

∑̀

s,t=1

�

1
(Ki−1+s)(Ki−1+t)

�1−a−δ
∇hu+t(bu+t)

′∇hu+s(bu+s)

where each bu+t lies between β∗0 and β0 almost surely, and so

Pr
�

1
T−1

T−2
∑

u=0

J
∑

i=1

�∑̀

t=1

(hu+t(β
∗
0)− hu+t)/(Ki−1 + t)1−a−δ

�2
> ε

�

≤ Pr
�

1
T2

T−2
∑

u=0

J
∑

i=1

∑̀

s,t=1

�

�

�

1
(Ki−1+s)(Ki−1+t)

�1−a−δ
∇hu+t(bu+t)

′∇hu+s(bu+s)
�

�1{β∗0 ∈ N}> ε
�

+ Pr[β∗0 /∈ N].

The second probability, Pr[β∗0 /∈ N], converges to zero by Lemma A.1. For the first, we
have

E 1
T2

T−2
∑

u=0

J
∑

i=1

∑̀

s,t=1

�

�

�

1
(Ki−1+s)(Ki−1+t)

�1−a−δ
∇hu+t(bu+t)

′∇hu+s(bu+s)
�

�1{β∗0 ∈ N}

≤ 1
T2

T−2
∑

u=0

J
∑

i=1

∑̀

s,t=1

E sup
β∈N

�

�

�

1
(Ki−1+s)(Ki−1+t)

�1−a−δ
∇hu+t(β)

′∇hu+s(β)
�

�

≤ O( 1
T2 )

T−2
∑

u=0

J
∑

i=1

∑̀

s,t=1

�

1
(Ki−1+s)(Ki−1+t)

�1−a−δ
E |mu+t mu+s|

≤ O( 1
T2 )

T−2
∑

u=0

J
∑

i=1

∑̀

s=1

(Ki−1 + s)2a+2δ−2 E m2
u+s

where the second inequality holds by assumption and the third follows from repeated
application of the Cauchy-Schwarz inequality. Since E m2

u+s is bounded, the large sum-
mation is O(T ) and this final term converges to zero, completing the proof.

Proof of (26). Expanding h∗t (β̂
∗
t ) around β∗0 gives

β̂∗t − β
∗
0 =

�

−
t−1
∑

s=1

∇h∗s (b
∗
s )
�−1

t−1
∑

s=1

h∗s/(t − 1)
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with each b∗s a.s. between β̂∗t and β∗0 . Then

max
t=R,...,T−1

(t − 1)a|β̂t − β0| ≤ max
t,u=R,...,T−1

�

�

�

��

t−1
∑

s=1

∇h∗s (b
∗
s )
�−1
− B∗

�

(t − 1)a−1
t−1
∑

s=1

h∗s

�

�

�

+ max
t=R,...,T−1

�

�B∗(t − 1)a−1
t−1
∑

s=1

h∗s
�

� (30)

and both terms converge to zero in (conditional) probability by the previous arguments.

Lemma A.4. Under the conditions of Theorem 1,

1p
P

T−1
∑

t=R

(β̂∗t − β
∗
0)
′∇2 f ∗i t(b

∗
i t)(β̂

∗
t − β

∗
0)→

p∗ 0 (31)

and

1p
P

T−1
∑

t=R

F ∗t · (β̂
∗
t − β

∗
0) = F ∗B∗ 1p

P

T−1
∑

t=1

ath
∗
t + op∗(1). (32)

Proof of (31). We have

Pr
�
�

�

1p
P

T−1
∑

t=R

(β̂∗t − β
∗
0)
′∇2 f ∗i t(b

∗
i t)(β̂

∗
t − β

∗
0)
�

�> ε
�

≤ Pr
�

1{β∗0 ∈ N , β̂∗t ∈ N for all t}
�

�

1p
P

T−1
∑

t=R

(β̂∗t − β
∗
0)
′∇2 f ∗i t(b

∗
i t)(β̂

∗
t − β

∗
0)
�

�> ε
�

+ Pr[β∗0 /∈ N] + Pr[β̂∗t /∈ N for some t = R, . . . , T − 1}

The second two probabilities on the rhs converge to zero by Lemma A.3 and the random
variable inside the first probability is bounded by

1{β∗0 ∈ N , β̂∗t ∈ N for all t} 1p
P

T−1
∑

t=R

(β̂∗t − β
∗
0)
′∇2 f ∗i t(b

∗
i t)(β̂

∗
t − β

∗
0)

≤
�

sup
t=R,...,T−1

|P1/4(β̂∗t − β
∗
0)|

2
�

1
P

T−1
∑

t=R

∇2 f ∗i t(b
∗
i t)1{β

∗
0 ∈ N , β̂∗t ∈ N}.

The summation is Op(1) by assumption and the supremum converges to zero by using
Lemma A.3 again.
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Proof of (32). For (32), we have the upper bound

�

�

1p
P

T−1
∑

t=R

�

F ∗t · (β̂
∗
t − β

∗
0)− F ∗B∗ath

∗
t

��

�≤

sup
s=R,...,T−1

|β̂∗s − β
∗
0 |
�

�

1p
P

T−1
∑

t=R

(F ∗t − F ∗)
�

�+
�

�F ∗ 1p
P

T−1
∑

t=R

�

(β̂∗t − β
∗
0)− B∗ath

∗
t

��

�.

The first term converges in conditional probability to zero by Lemma A.3.
For the second, expand each

∑t
s=1∇q∗s (β̂

∗
t ) around β∗0 to get

1p
P

T−1
∑

t=R

(β̂∗t − β
∗
0) =

1p
P

T−1
∑

t=R

�

1
t

t
∑

s=1

∇2q∗s (b
∗
t )
�−1

1
t

t
∑

s=1

h∗s

where b∗t is between β̂∗t and β∗0 . Then

�

�

1p
P

T−1
∑

t=R

�

(β̂∗t − β
∗
0)− B∗ath

∗
t

��

�≤ sup
t=R,...,T−1

�

�

�

�

1
t

t
∑

s=1

∇2q∗s (bt)
�−1
− B∗

�

�

�

�

�

�

1p
P

T−1
∑

t=R

1
t

t
∑

s=1

h∗s

�

�

�

= Op∗(1) sup
t=R,...,T−1

�

�

�

�

1
t

t
∑

s=1

∇2q∗s (bt)
�−1
− B∗

�

�

�

by Lemma A.3 and the supremum converges to zero in probability by Lemma A.3 as
well.

Lemma A.5. Under the conditions of Theorem 1, (11) holds.

Proof. We will use arguments very similar to Calhoun (2014). Define

ζ∗st = γ
′
1( f

∗
t − E∗ f ∗t ) + asγ

′
2h∗t

where γ1 and γ2 are arbitrary nonzero vectors, and also define

z∗j =
1p
P

j
∑̀

s=( j−1)`+1

ζ∗s

and

v∗2 = J var∗(z∗j )

where γ= (γ′1,γ′2)
′. By construction, E∗ h∗t = 0 almost surely, so E(z j | H ∗

j−1) = 0 almost
surely and {z∗j ,H

∗
j } is a martingale difference sequence.

From the MDS property, we have

J
∑

j=1

z∗j /
p

v∗→d N(0, 1)
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as long as the following properties hold:

J
∑

j=1

E∗(z∗2j 1{z∗2j > ε} | H
∗
j−1)→

p 0 (33)

and

Pr∗
�
�

�

J
∑

j=1

z∗2j /v
∗2 − 1

�

�> ε
�

→p 0. (34)

For (34), we have the usual bound

Pr∗
�
�

�

J
∑

j=1

z∗2j /v
∗2 − 1

�

�> ε
�

≤ Pr∗
�

1{β∗0 ∈ N}
�

�

J
∑

j=1

z∗2j /v
∗2 − 1

�

�> ε
�

+ Pr∗[β∗0 /∈ N]

and we can rewrite the summation in the first term as

1{β∗0 ∈ N}
�

J
∑

j=1

z∗2j /v
∗2−1

�

=
J
∑

j=1

�

1{β∗0 ∈ N}z∗2j /v
∗2−E(1{β∗0 ∈ N}z∗2j /v

∗2 | H ∗
j−1)

�

.

This term is the sum of a uniformly integrable martingale difference sequence and satis-
fies the LLN (i.e. Davidson’s, 1994, Theorem 19.7), and so it converges in (conditional)
probability to zero. The second term converges in probability to zero by consistency of
β∗0 (Lemma A.1).

Similarly, (33) holds if

1{β∗0 ∈ N}
J
∑

j=1

E∗(z∗2j 1{z∗2j > ε} | H
∗
j−1)→ 0,

which holds by uniform integrability of 1{β∗0 ∈ N}z∗2j .
Finally, since the variance of the bootstrapped statistic can be rewritten as a HAC

variance estimator,

v∗2→p γ′1S f f γ1 + 2λ f h(γ
′
2S′f hγ1) +λhhγ

′
2Shhγ2

holds by Theorem 2.2 of de Jong and Davidson (2000), using West’s (1996) arguments
to handle the as terms.
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